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The aim of this study is to select appropriate electroencephalography (EEG) signals which can distinguish 
between healthy, convulsive, and epileptic signals. The proposed model can achieve this end with a high 
accuracy. A set of EEG signals for five different conditions was used. It was adopted from the University of Bonn, 
Germany. Using discrete wavelet transform, EEG signals were decomposed into their frequency sub-bands for 
extracting their optimal features. Having extracted the features, EEG signals were divided into target groups 
using multilayer perceptron (MLP). The proposed model achieved an accuracy of 98.33% in diagnosing and 
categorizing epileptic EEG signals. Since the visual and experimental analysis of EEG signals have limitations, 
the proposed method can play a vital role in helping physicians and specialists.  
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1. Introduction* 

Epilepsy is one of the most prevalent neurological disorders 
among people. It is estimated that 5 people are afflicted with 
epilepsy among each 1000 people. Epilepsy could be defined as a 
sudden change in the intracellular and extracellular potential 
difference. This definition implies that the type of neuron 
determines clinical demonstrations. The automatic diagnosis of 
epileptic convulsions has attracted the attention of clinicians and 
engineers since 1970. The automatic prediction of seizures is 
useful in drug delivery systems and neural stimulation devices 
(Stein et al., 2000; Osorio and Frei, 2009). An important issue in 
predicting epileptic convulsions is that they are predictable 
through analyzing the changes in the features of EEG signals that 
happen before the occurrence of seizures (Mormann et al., 2003). 
Epileptic seizures prediction needs further analysis due to the 
following reasons (Iasemidis, 2003): 

 
1. Generally, their results are not repeatable. In other words, 

their confidence rate is not certain. 
2. The dependence of the result on sensitivity and inaccurate 

prediction rate is not taken into account. 
3. Their efficiency is not mostly acceptable and has a high 

acceptance and rejection rate. 

2. Materials and methods 

In an automatic epileptic convulsion detection system, a 
distinction should be made between the pre-convulsion, during 
convulsion, and post-convulsion EEG signals. Then, they should 
be analyzed (Tong and Thakor, 2009). Some studies focused on 
single-channel EEG signals, while some others focused on multi-
channel recorded EEG signals (Deburchgraeve et al., 2008). This 
paper studied the epileptic and healthy signals of Andrzejak 
database (http://epileptologyiebonn.de/cms/front_content.php) 
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from the University of Bonn (Andrzejak et al., 2001) (Figs. 1-4). 
The collected EEG signals included five different categories. They 
were named A, B, C, D, and E, respectively and contained 100 
single-channel signals with a duration of 26.3 seconds. The 
pattern of surface electrodes placement followed that of the 
universal system 20-10 (Fig. 5). All EEG signals are recorded with 
a 128-channel system and an average voltage. Sampling 
frequency is 173.61 Hz in this database. According to Nyquist 
theorem, the maximum effective sampling frequency is half the 
sampling frequency. Therefore, the electrodes were named as 

follows (assuming 
173.61

2
= 86.6): 

 
𝐹𝑃1, 𝐹𝑃2, 𝐹3, 𝐹4, 𝐶3, 𝐶4, 𝑃3, 𝑃4, 𝐹7, 𝐹8, 𝑇1, 𝑇2, 𝑇3, 𝑇5, 𝑇6, 𝑂1, 𝑂2, 𝐹2, 𝑃2 

 

The frontal lobe, temporal lobe, parietal lobe, central lobe, 
and occipital lobe were named F, T, P, C, and O, respectively 
(Durka, 2003). 

 

 
Fig. 1. An example of healthy signals. 

 

In processing medical signals, it is vitally important to 
minimize existing noises and artifacts in order that they have the 
minimum effect on the feature extraction stage. In a wide-
spreading spectrum, recorded EEG signals may contain technical 
and physiological noises (Sörnmo and Laguna, 2005). By taking 
into account the physiological aspects, such as the artifacts 
caused by electrooculography (EOG), electromyography (EMG), 
and electrocardiography (ECG), and by applying an appropriate 
pre-processing, frequencies higher than 60 Hz were considered 
as noises and filtered. It is vitally important to select features 
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which can best describe EEG signals for diagnosing convulsion 
and categorization. Since EEG signals are non-stationary waves, 
wavelet transform was used in their estimation. This frequency 
processing tool extracts a set of transient and local signals in 
space and frequency domains (Adeli et al., 2007; Guo et al., 2010; 
Yuan et al., 2011).  

 

 
Fig. 2. An example of convulsive signals. 

 

 
Fig. 3. An example of epileptic signals. 

 

 
Fig. 4. Healthy and epileptic signals overlap rate. 

 
 

 
Fig. 5. The pattern of surface electrodes placement following that of the 

universal system 20-10. 

 
Wavelet transform decomposes signals into a set of basic 

functions called wavelet. These functions are obtained by 
applying delays, contractions, and transfer them on a unique 
function called wavelet pattern. Continuous wavelets are the 
functions resulted from an odd function using delays and 
transfers. They are dependent on transfer parameter. In order to 
remove noises and generate a signal appropriate for 
decomposition, EEG signals were limited by a low-pass filter and 
impulse response. Compared to EEG signals, sub-bands have 
more accurate information about neurons activities. They may 
not be evident in the original signals due to specific changes. 
Therefore, decomposition is carried out. The discrete wavelet 

signal is analyzed in the form of different frequency value bands 
and different magnifications. Using signal decomposition, the 
discrete wavelet signal is decomposed into coarse 
approximations and detailed information. In fact, discrete wave 
transform (DWT) employs a set of functions called measurement 
functions and wavelet functions. They are dependent on low-pass 
and high-pass filters. Decomposing signals into various frequency 
bands is simply achievable through successive applications of 
high-pass filters (HPFs) and low-pass filters (LPFs) (Subasi, 
2005; Khan et al., 2012). This decomposition method is known as 
multi-resolution decomposition. This type of analysis is 
illustrated in detail in Fig. 6. The number of decomposition levels 
is selected based on dominant frequency components of the 
signal (Subasi, 2005). Selected levels maintain signal parts that 
highly correlate to the frequency related to signal classification in 
the wavelet. 

 
Fig. 6. Signal decomposition levels. 

 
The proposed method involves 4 layers and 5 frequency 

bands. It is due to the fact that higher order filters have 
fluctuations and lower order filters are rougher. Therefore, the 
signal was decomposed into D1-D4 details and the last 
estimation A4. Frequency sub-band values are shown in Table 1. 
Figs. 7, 8, and 9 show the sub-bands resulted from the 
decomposition of healthy, convulsive, and epileptic signals using 
wavelet function Db4 in 4 levels. First, signals are decomposed 
into 5 levels. Then, level 5 approximation signal is removed. It 
has the lowest frequency band. It does not contain epileptic 
information, but contains noise information. Finally, the signal is 
reconstructed. 

 
Table 1 
Frequency bands limits. 

(0-60)Hz Band-limited EEG 
(0-4) Hz Delta 
(4-8) Hz Theta 

(8-15) Hz Alpha 
(15-30) Hz Beta 
(30-60) Hz Gamma 

 

Having applied pre-processing and carried out required 
processes, the desired feature vector was obtained. Statistical 
features, such as the maximum, minimum average, and standard 
deviation of each sub-band were used. Several statistical models 
have been proposed for classification and prediction. Classifying 
and predicting disorders based on risk factors is one of the 
applications of artificial neural networks (Livingstone and 
Totowa, 2008; Dreiseitl and Ohno-Machado, 2002). Artificial 
neural networks are simply applicable to problems with no 
algorithmic solution, a complex algorithmic solution, and 
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problems that are simple for people but difficult for computers 
(Zini and d'Onofrio, 2003). 

 

 
Fig. 7. A healthy signal with Daubechies 4 at level 4. 

 
 

 
Fig. 8. A convulsive signal with Daubechies 4 at level 4. 

 
 

 
Fig. 9. Epileptic signals with Daubechies 4 at level 4. 

 

They are also useful as an alternative solution for problems 
that generally have statistical solutions, such as regression 
modeling, predicting time series, cluster analysis, discriminate 
analysis, statistical decision-making problems, process control, 
and estimating the conditional distribution (Livingstone and 
Totowa, 2008; Dreiseitl and Ohno-Machado, 2002). An artificial 
perceptron multi-layer neural network with error back-

propagation algorithm was used for evaluating different states of 
EEG signals, such as healthy, convulsive, and epileptic states. 
Having extracted desired statistical features using DWT, artificial 
neural network was used for classification. An artificial neural 
network with 12-15-3 structure and with sigmoid transfer 
function was designed and trained based on 80% of the available 
data. In the training phase, 80% of the collected data were used 
for training the artificial neural network. Having implemented 
the multi-layered perceptron (MLP) neural network using error 
back-propagation learning (EBPL), having tested multiple layers 
and neurons, and having observed the errors, the most 
appropriate structure was selected. The most appropriate 
structure was (12-15-3), that is the network had four input 
variables for each category. The variables are the extracted 
statistical features, three output variables, and 15 neurons for 
maintaining the hidden layer. The output variable was defined 
based on three states, such as healthy, convulsive, and epileptic 
stages. Then, 20% of the available data were used for testing the 
neural network. In this phase, MLP with EBPL and (12-15-3) 
structure was used. For a more appropriate evaluation of results, 
feature and sensitivity were also calculated. 

3. Analyzing system performance using confusion matrix 

Generally, in classification systems and disorder diagnosis 
systems, confusion matrix and receiving operating characteristic 
(ROC) curves are used for evaluating efficiency. For analyzing the 
confusion matrix of classification and disorder diagnosis, four 
states are defined: true positive (TP), true negative (TN), false 
positive (FP), and false negative (FN). Each variable has a specific 
meaning in confusion matrix. TP is the number of patients 
suffering from epilepsy who are correctly diagnosed by the 
computer system. FP is the number of patients with epilepsy who 
are incorrectly diagnosed as healthy by the computer system. TN 
is the number of convulsive patients and healthy people correctly 
diagnosed as healthy by the computer system. FN is the number 
of convulsive patients or healthy people incorrectly diagnosed as 
epileptic by the computer system. P is the number of patients 
correctly classified by the system. In other words, it is the 
number of epileptic patients who are diagnosed correctly. It is 
also the number of healthy, convulsive, or non-epileptic people 
correctly classified. N is the number of the people who are 
incorrectly classified. In other words, it is the number of epileptic 
patients who are incorrectly diagnosed as healthy, or the number 
of healthy or convulsive people incorrectly diagnosed as epileptic 
or convulsive. Using the defined concepts, the efficiency of the 
proposed method was analyzed and they were named as 
sensitivity, specificity, classification, and precision, respectively. 
System precision is a measure that determines system's 
capability in diagnosing and classifying epileptic patients (true 
patients) correctly. Accuracy is but another index for evaluating 
such systems. It includes a more generalized perspective and 
domain of patient's classification systems. It is equal to the ratio 
of all correctly diagnosed cases, whether healthy or unhealthy, to 
all correctly or incorrectly classified cases. Sensitivity, specificity, 
and precision are defined as follows: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                (1) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁 
                (2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+T𝑁+𝐹𝑃+𝐹𝑁
                 (3) 

4. Results 

The following confusion matrix is obtained from applying the 
neural network on the test data (Tables 2-3). This set was a new 
one for the network and it was not trained by those data. Results 
show that the neural network worked correctly since healthy 
people and patients were correctly diagnosed.  



E. S. Guido / Annals of Electrical and Electronic Engineering 2(1) 1–5 

 4  

 

For a better understanding, it is necessary to calculate the 
sensitivity and specificity of the proposed method. According to 
confusion matrix and Eqs. 1, 2, and 3, sensitivity, specificity, and 
precision of the neural network are as follows. The proposed 
classification system's sensitivity is 100%, which means the 
proposed system can diagnose all epileptic cases correctly. 
System's specificity was 97.1%, which is significant. It means that 
the proposed system could diagnose 98.33% and even a higher 
number of the convulsive cases correctly. 

 
Table 2 

Predicting patients’ condition based on the result in the training phase. 
Predicting healthy convulsive epileptic Total 

healthy 60 0 0 60 
convulsive 0 90 0 90 
epileptic 0 0 90 90 

Total 60 90 90 240 
 
Table 3 
Predicting patients’ condition based on the result in the test phase (20 percent 
of the samples, which are 60 cases). 

Predicting healthy convulsive epileptic Total 
healthy 8 0 0 8 

convulsive 1 23 2 26 
epileptic 1 1 24 26 

Total 10 24 26 60 

5. Discussion 

Results from implementing the proposed MLP artificial 
neural network yield the highest sensitivity and precision. Many 
researchers have used wavelet transform in diagnosing epilepsy. 
Shoeb et al. (2004) used wavelet decomposition for generating 
feature vector. Meier et al. (2008) exploited the combination of 
wavelet and time for extracting features as the input data for 
support vector machine (SVM). Abibullaev et al. (2010) identified 
and presented various wavelet function for diagnosing 
convulsion and epilepsy, including bior1, 3-bior, Db5, Db2, 1.5). 
Adeli et al. (2007) analyzed EEG signals for detecting EEG 
changes based on correlation function, frequency domain 
features, frequency time analysis, entropy, and wavelet 
transform. Using chaos analysis, they divided the wavelets 
obtained from EEG signals into healthy and epileptic categories. 
Some other linear and non-linear methods were also used in 
predicting epileptic attacks (Meier et al. 2008; Polat and Güneş, 
2007; Chan et al., 2008; Aarabi et al., 2009; Niederhauser et al., 
2003; Kannathal et al., 2005). Results from various studies 
carried out using wavelet transform are shown in Table 4. 
Another disadvantage of existing solutions is their low precision 
and high dispersion which leads into a weak diagnosis. It is due 
to the high number of effective variables in physiological systems 
(Iasemidis, 2003). The aim of this study was to improve 
prediction results. Therefore, some changes were made to input 
and output variables. The type of selected wavelet function and 
variables were the reasons for a higher sensitivity and precision. 
Due to the limitation facing diagnosis systems, MLP structure was 
selected as the most appropriate artificial neural network 
structure with respect to the repetition of various conditions. The 
combination of artificial intelligence methods in classifying 
patterns, including artificial neural networks with wavelet 
transform resulted in an improved efficiency, agility, and 
diagnosis in the proposed method. 

 
Table 4 
Results from other studies using wavelet transform. 

name(year) ACC 
Kannathal et al.(2005) 90 

Adeli et al. (2007) not compare 
Subasi (2005) 95 

6. Conclusion 

This paper aimed at proposing a new method for improving 
the precision of prediction and classifying different states of EEG 

signals into healthy, convulsive, and epileptic states. Using 
wavelet transform and MLP, sensitivity, specificity, and precision 
indexes were improved significantly.  
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